Characterization of chondrocyte scaffold carriers for cell-based gene therapy in articular cartilage repair.

نویسندگان

  • Wei Shui
  • Liangjun Yin
  • Jeffrey Luo
  • Ruidong Li
  • Wenwen Zhang
  • Jiye Zhang
  • Wei Huang
  • Ning Hu
  • Xi Liang
  • Zhong-Liang Deng
  • Zhenming Hu
  • Lewis L Shi
  • Hue H Luu
  • Rex C Haydon
  • Tong-Chuan He
  • Sherwin H Ho
چکیده

Articular cartilage lesions in the knee are common injuries. Chondrocyte transplant represents a promising therapeutic modality for articular cartilage injuries. Here, we characterize the viability and transgene expression of articular chondrocytes cultured in three-dimensional scaffolds provided by four types of carriers. Articular chondrocytes are isolated from rabbit knees and cultured in four types of scaffolds: type I collagen sponge, fibrin glue, hyaluronan, and open-cell polylactic acid (OPLA). The cultured cells are transduced with adenovirus expressing green fluorescence protein (AdGFP) and luciferase (AdGL3-Luc). The viability and gene expression in the chondrocytes are determined with fluorescence microscopy and luciferase assay. Cartilage matrix production is assessed by Alcian blue staining. Rabbit articular chondrocytes are effectively infected by AdGFP and exhibited sustained GFP expression. All tested scaffolds support the survival and gene expression of the infected chondrocytes. However, the highest transgene expression is observed in the OPLA carrier. At 4 weeks, Alcian blue-positive matrix materials are readily detected in OPLA cultures. Thus, our results indicate that, while all tested carriers can support the survival of chondrocytes, OPLA supports the highest transgene expression and is the most conductive scaffold for matrix production, suggesting that OPLA may be a suitable scaffold for cell-based gene therapy of articular cartilage repairs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Gene Therapy in Cartilage Repair

The key principle of gene delivery to articulations by direct intra-articular injection is to release complementary DNA(cDNA)-encoding medical products that will lead to maintained, endogenous production of the gene products withinthe articulation. In fact, this has been accomplished for both in vivo and ex vivo gene delivery, using several vectors,genes, and cells in some animal models. Some c...

متن کامل

Comparing Behavior of Chondrocyte Cells on Different Polyhydroxybutyrate Scaffold Structure for Cartilage Tissue Engineering

Introduction: As the ability to repair cartilage tissue in body is limited, finding a suitable method for cartilage regeneration has gained the attention of many scholars. For this purpose, scaffold structure and morphology, along with cell culture on it, can be a novel method to treat cartilage injuries, osteoarthritis. Methods: In this study, polyhydroxybutyrate (PHB) is selected as the scaf...

متن کامل

Conditioned medium derived from mesenchymal Stem cells regenerates’ defected articular cartilage

Background & Aims: One of cell- based technical issues associated with cartilage repair assay is delivering cells to the site of the parts where damage is created. Mesenchymal stem cells (MSCs) with their chondrogenic potential are ideal candidates for cartilage regeneration. High expression of cartilage hypertrophy markers by MSCs would result in apoptosis and ossification. This investigation ...

متن کامل

Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold

Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...

متن کامل

Scaffold-free tissue engineering for injured joint surface restoration

Articular cartilage does not heal spontaneously due to its limited healing capacity, and thus effective treatments for cartilage injuries has remained challenging. Since the first report by Brittberg et al. in 1994, autologous chondrocyte implantation (ACI) has been introduced into the clinic. Recently, as an alternative for chondrocyte-based therapy, mesenchymal stem cell (MSC)-based therapy h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 101 12  شماره 

صفحات  -

تاریخ انتشار 2013